M@thEm@ti¢§

Part 6 (comparing square roots)

\Leftrightarrow Compare two numbers in form of $\pm \sqrt{a}$; a > 0

Example: Compare

$$\sqrt{12}$$
 and $\sqrt{15}$

$$-\sqrt{21}$$
 and $-\sqrt{18}$

$$\sqrt{24}$$
 and $-\sqrt{32}$

$$12 < 15$$
So
$$\sqrt{12} < \sqrt{15}$$

$$21 > 18$$

$$\sqrt{21} > \sqrt{18}$$
So
$$-\sqrt{21} < -\sqrt{18}$$

 $\sqrt{24} > -\sqrt{32}$ Since the positive number is always greater than the negative number.

\Leftrightarrow Compare two numbers in form of $\pm a\sqrt{b}$; b>0

Example 1: if the two numbers include the same radicals.

Compare

$$2\sqrt{12}$$
 and $3\sqrt{12}$

$$2 < 3$$
So
$$2\sqrt{12} < 3\sqrt{12}$$

$$-5\sqrt{21}$$
 and $-3\sqrt{21}$

$$-5 < -3$$

$$-5\sqrt{21} < -3\sqrt{21}$$

$$5\sqrt{26} \text{ and } -2\sqrt{26}$$

 $5\sqrt{26} > -2\sqrt{26}$ Since the positive number is always greater than the negative number.

\Leftrightarrow Compare two numbers in form of $\pm a\sqrt{b}$; b>0

Example: if the two numbers include different radicals.

Compare

 $3\sqrt{15}$ and $2\sqrt{7}$

$$3 > 2 \text{ and } \sqrt{15} > \sqrt{7}$$

So,
 $3\sqrt{15} > 2\sqrt{7}$

\Leftrightarrow Compare two numbers in form of $\pm a\sqrt{b}$; b>0

Example 2: if the two numbers include different radicals.

Compare

 $3\sqrt{5}$ and $2\sqrt{7}$

Method 1:

Squaring the two numbers:

$$(3\sqrt{5})^2 = 45$$
 and $(2\sqrt{7})^2 = 28$
 $45 > 28$ so, $3\sqrt{5} > 2\sqrt{7}$

Method 2:

$$3\sqrt{5} = \sqrt{3^2 \times 5} = \sqrt{45}$$
$$2\sqrt{7} = \sqrt{2^2 \times 7} = \sqrt{28}$$
$$45 > 28 \text{ so, } 3\sqrt{5} > 2\sqrt{7}$$

\Leftrightarrow Compare two numbers in form of $\pm a\sqrt{b}$; b>0

Example 3: if the two numbers include different radicals.

Compare

$$-2\sqrt{11}$$
 and $-3\sqrt{7}$

Method 1:

Squaring the two numbers $2\sqrt{11}$ and $3\sqrt{7}$:

$$(2\sqrt{11})^2 = 44$$
 and $(3\sqrt{7})^2 = 63$
 $44 < 63$ so, $2\sqrt{11} < 3\sqrt{7}$
Then, $-2\sqrt{11} > -3\sqrt{7}$

Method 2:

$$-2\sqrt{11} = -\sqrt{2^2 \times 11} = -\sqrt{44}$$

$$-3\sqrt{7} = -\sqrt{3^2 \times 7} = -\sqrt{63}$$

$$44 < 63 \text{ so, } \sqrt{44} < \sqrt{63}$$

$$\text{Then } -\sqrt{44} > -\sqrt{63}$$

$$\text{Hence } -2\sqrt{11} > -3\sqrt{7}$$

- If a > b; then a b > 0
- If a < b; then a b < 0

\Leftrightarrow Compare two numbers in form of $a \pm b\sqrt{c}$; c > 0

Example 1:

Compare
$$2 + \sqrt{3}$$
 and $2 + \sqrt{5}$

$$\sqrt{3} < \sqrt{5}$$
So
$$2 + \sqrt{3} < 2 + \sqrt{5}$$

$$2 + \sqrt{3}$$
 and $2 - \sqrt{3}$

$$2 + \sqrt{3} > 2$$

$$2 - \sqrt{3} < 2$$
So
$$2 + \sqrt{3} > 2 - \sqrt{3}$$

- If a > b; then a b > 0
- If a < b; then a b < 0
- **\Leftrightarrow** Compare two numbers in form of $a \pm b\sqrt{c}$; c > 0

Example 2:

Compare A =
$$3 + 2\sqrt{2}$$
 and B = $2 + 3\sqrt{2}$

Calculating
$$A - B$$

$$A - B = 3 + 2\sqrt{2} - (2 + 3\sqrt{2}) = 3 + 2\sqrt{2} - 2 - 3\sqrt{2} = 1 - \sqrt{2}$$

 $1 < \sqrt{2}$ so $1 - \sqrt{2} < 0$. Hence, $A < B$

- If a > b; then a b > 0
- If a < b; then a b < 0

\Leftrightarrow Compare two numbers in form of $a \pm b\sqrt{c}$; c > 0

Example 3:

Compare A =
$$2 + 5\sqrt{3}$$
 and B = $2 + 4\sqrt{3} + \sqrt{2}$

Calculating
$$A - B$$

 $A - B = 2 + 5\sqrt{3} - (2 + 4\sqrt{3} + \sqrt{2}) = 2 + 5\sqrt{3} - 2 - 4\sqrt{3} - \sqrt{2}$
 $= \sqrt{3} - \sqrt{2}$
 $\sqrt{3} > \sqrt{2}$ so $\sqrt{3} - \sqrt{2} > 0$. Hence, $A > B$